WikiNews de

December 17, 2010

Rätsel gelöst: Warum Gammablitze von der Erde aus gesehen so dunkel erscheinen

Rätsel gelöst: Warum Gammablitze von der Erde aus gesehen so dunkel erscheinen

aus Wikinews, einem freien Wiki für Nachrichten
Wechseln zu: Navigation, Suche
Veröffentlicht: 22:51, 17. Dez. 2010 (CET)
Bitte keine inhaltlichen Veränderungen vornehmen.

NASA-Illustration eines Gammablitzes

NASA-Swift-Satellit

München (Deutschland), 17.12.2010 – Astronomen fragten sich seit einigen Jahren, warum eigentlich so wenig Licht von den so energiereichen Gammablitzen auf der Erde ankommt. Zur Erklärung dieser so genannten „dunklen“ Gammastrahlenausbrüche gibt es eine einfach klingende Erklärung: Interstellarer Staub dimmt das Licht dieser Energieausbrüche. Das fanden jetzt Astronomen des Max-Planck-Instituts für Extraterrestrische Physik in Garching bei München heraus.

Diese Gammablitze strahlen mehr Energie ab als irgendein anderes astronomisches Phänomen seit dem großen Knall, der zur Entstehung des heute bekannten Universums führte. Solche Gammastrahlenausbrüche (englisch: Gamma-Ray Bursts (GRBs)) teilen die Wissenschaftler in zwei Gruppen ein. Die „kurzen Bursts“ dauern nur Bruchteile einer Sekunde, die „langen Bursts“ können bis zu mehreren Minuten dauern. Letztere gelten als Folgen oder Bestandteil gewaltiger Supernovaexplosionen, die am Ende des Lebens sehr massereicher und kurzlebiger Sterne stattfinden. Über die Ursachen der kurzen Bursts gibt es nur vage Vermutungen.

Allen GRBs ist gemeinsam, dass sie noch längere Zeit nach ihrem ersten Auftreten elektromagnetische Strahlung im Röntgenbereich aussenden, also sozusagen „nachglühen“. Merkwürdigerweise sendet aber nur ein Teil von ihnen sichtbares Licht aus. Die anderen bleiben dunkel. Zur Erklärung dieses Phänomens gab es verschiedene Erklärungsansätze, die aber nicht befriedigend waren.

Zur Erforschung des Phänomens startete die NASA am 20. November 2004 die Satellitenmission Swift. Der Satellit wurde in einer Umlaufbahn oberhalb der Erdatmosphäre positioniert, so dass Beobachtungsdaten gewonnen werden konnten, die nicht durch die Erdatmosphäre getrübt waren. Der Satellit reagierte unverzüglich auf eingehende Signale von Gammastrahlenausbrüchen und meldete die Daten an terrestrische Beobachtungsstationen. Die Teleskope am Boden stellten sich sofort auf die übermittelten Koordinaten ein und erhoben Daten des Nachglühens im Röntgenbereich.

Die Garchinger Wissenschaftler kombinierten diese Daten von Swift mit den Beobachtungen, die das GROND (Gamma-Ray Burst Optical/Near-Infrared Detector) genannte Instrument aufzeichnete. GROND wurde speziell für die Beobachtung des Nachglühens von Gamma-Ray Bursts entwickelt und ist Bestandteil des MPG/ESO 2,2 Meter-Teleskops auf La Silla in Chile, das zur Europäischen Südsternwarte gehört. Im Rahmen der Studie konnte so das als „Nachglühen“ bezeichnete Phänomen der Gammastrahlenexplosionen über weite Bereiche des elektromagnetischen Spektrums vermessen werden. Daraus ließ sich auch die Staubmenge kalkulieren, die zwischen dem Ursprung der Strahlung und ihrer Ankunft auf der Erde vorhanden war. Mit Hilfe weiterer Beobachtungen, unter anderem durch das Very Large Telescope der ESO, gelang es dann auch die Entfernungen der Bursts näher zu bestimmen.

Ergebnis der Studie ist, dass zirka 20–30 Prozent der ursprünglichen Helligkeit der GRBs aufgrund von interstellarem Staub verloren geht. Eine weitere Abschwächung der Lichtintensität der GRBs kommt durch die so genannte kosmologische Rotverschiebung zustande. Die Kombination dieser Faktoren kann nach Ansicht der Wissenschaftler das Phänomen der „dunklen Gammastrahlenausbrüche“ vollständig erklären.

Themenverwandte Artikel

Quellen

This text comes from Wikinews. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution 2.5 licence. For a complete list of contributors for this article, visit the corresponding history entry on Wikinews.

March 24, 2007

Sonnenobservatorium Hinode zeigt die Sonne in neuem Licht

Sonnenobservatorium Hinode zeigt die Sonne in neuem Licht

aus Wikinews, einem freien Wiki für Nachrichten
Wechseln zu: Navigation, Suche
Artikelstatus: Fertig 10:56, 24. Mär. 2007 (CET)
Bitte keine weiteren inhaltlichen Veränderungen vornehmen, sondern einen Folgeartikel schreiben.

Sonnenobservatorium Hinode

Kyūshū (Japan), 24.03.2007 – Sonnenphysiker in aller Welt sind begeistert von den Bildern, die das Sonnenobservatorium Hinode (auf Deutsch „Sonnenaufgang“) seit Ende letzten Jahres von unserem Zentralgestirn gemacht und zur Erde gesendet hat. „Die Bilder“, erklärte Dick Fischer von der „Heliophyics Division“ der US-Raumfahrtbehörde NASA, „eröffnen eine neue Ära der Erforschung einiger Prozesse auf der Sonne, die die Erde, Astronauten, Satelliten und das Sonnensystem beeinflussen.“

Unter der Bezeichnung „Solar-B“ wurde das Sonnenobservatorium als Gemeinschaftsprojekt der Japan Aerospace Exploration Agency (JAXA), des National Astronomical Observatory of Japan (NAOJ), der National Aeronautics and Space Administration (NASA) und des Particle Physics and Astronomy Research Council (PPARC) entwickelt. Der Start erfolgte am 22. September vorigen Jahres um 21:36 Uhr GMT vom Uchinoura Space Center in Kyūshū, Japan.

Während der ersten beiden Wochen nach dem erfolgreichen Start und dem Erreichen der Umlaufbahn wurden mehrere Flugbahnkorrekturen vorgenommen, um den Satelliten auf eine sonnensynchrone Bahn zu bringen. Von seiner jetzigen Position aus sind Sonnenbeobachtungen über mehrere Monate ohne Unterbrechung möglich.

Von Hinode erhoffen sich die Astrophysiker Antworten auf eine Reihe bisher nicht beantworteter Fragen: Warum gibt es oberhalb der relativ kühlen Atmosphäre die extrem heiße Korona|? Wie entstehen die so genannten Flares (auch als Sonnenfackeln bezeichnet)? Wodurch entsteht das Magnetfeld der Sonne? Außerdem hoffen die Wissenschaftler, mit Hilfe von Hinode eine Methode zu finden, mit der sich die Entstehung von Sonnenflecken, aus denen sich häufig Flares und Eruptionen mit heftigen Sonnenstürmen entwickeln, vorhersagen lässt, um so zu einer Art „Weltraum-Wettervorhersage“ zu kommen.

Die Chromosphäre der Sonne im Licht der H-α-Linie

Zur Erforschung dieser noch weitgehend unverstandenen Phänomene auf unserer Sonne wurde Hinode gleich mit drei hochempfindlichen Teleskopen ausgestattet. Das Solar Optical Telescope (SOT) wurde am 25. Oktober 2006 aktiviert. Es liefert trotz der Entfernung von 150 Millionen Kilometern gestochen scharfe Bilder der Sonnenoberfläche mit einer räumlichen Auflösung von 0,2 Bogensekunden. Mit einer solchen Auflösung könnte Hinode auf der Erde noch Objekte von 50 Zentimetern Größe scharf abbilden. Verbunden mit dem SOT ist ein Vektor-Magnetograph zur detaillierten Vermessung der Magnetfelder auf der Sonne. Das SOT ist eine Gemeinschaftsentwicklung der Vereinigten Staaten, der JAXA und des National Astronomical Observatory of Japan (NAOJ).

Das Röntgenteleskop (XRT) an Bord von Hinode liefert erstmals aufregende Bilder von Protuberanzen im Röntgenwellenbereich. Dieses Teleskop wurde von der NASA und der JAXA gemeinsam entwickelt.

Das dritte Teleskop ist das Extreme Ultraviolet Imaging Spectrometer (EIS). Dieses Gerät wurde am 28. Oktober 2006 in Betrieb genommen. Es liefert Bilder der Sonne, bei denen nur das Licht bestimmter Spektrallinien aufgezeichnet wird. Die verschiedenen Ionen im Gas an der Sonnenoberfläche strahlen ihr Licht in für das jeweilige Ion typischen, genau bekannten Wellenlängen ab, so dass die Zusammensetzung des Gases anhand der Spektrallinien genau bestimmt werden kann. Solche Bilder können Aufschluss darüber geben, wie die verschiedenen Ionen auf der Sonne verteilt sind, und wie sie sich über die Sonnenoberfläche bewegen. Das EIS wurde vom Particle Physics and Astronomy Research Council (PPARC) in Großbritannien mit Unterstützung von NASA und JAXA gebaut.

Die Korona der Sonne während der Sonnenfinsternis im Jahre 1999

Im Dezember 2006 begann die erste Langzeitbeobachtungsphase. Seitdem staunen die Astrophysiker über die Bilder und Filme, die Hinode liefert. Anhand von Filmen von der Chromosphäre entwickelten sie bereits eine erste Theorie, die die ungewöhnlich hohen Temperaturen von bis zu einer Million Grad in der Korona erklären könnte.

In der Chromosphäre, einer dünnen Schicht der Sonnenatmosphäre, die bei Sonnenfinsternissen als rot leuchtender Kranz sichtbar wird, entstehen magnetische Schleifen, verformen und verdrehen sich und explodieren dann in einer gewaltigen Eruption. „Bislang dachten wir, dass in der Chromosphäre nicht viel los ist, aber das war wohl eine Fehleinschätzung“, sagt John Davis vom Marshall Space Flight Center der Nasa. Nach Ansicht der Wissenschaftler ist in diesen verdrehten Magnetfeldlinien eine riesige Menge Energie gespeichert, die bei der Eruption frei wird und die Korona aufheizt. Leon Golub vom Harvard-Smithsonian Center for Astrophysics sagte: „Wir haben viele unerwartete Dinge gesehen, die Mission ist schon jetzt ein Erfolg.“ Einige Wissenschaftler bezeichnen Hinode bereits jetzt als „Hubble für die Sonne“.

Themenverwandte Artikel

Quellen

This text comes from Wikinews. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution 2.5 licence. For a complete list of contributors for this article, visit the corresponding history entry on Wikinews.

February 19, 2007

NASA-Satellitenmission zur Erforschung elektromagnetischer Sonnenstürme gestartet

NASA-Satellitenmission zur Erforschung elektromagnetischer Sonnenstürme gestartet

aus Wikinews, einem freien Wiki für Nachrichten
Wechseln zu: Navigation, Suche
Artikelstatus: Fertig 22:12, 19. Feb. 2007 (CET)
Bitte keine weiteren inhaltlichen Veränderungen vornehmen, sondern einen Folgeartikel schreiben.

Start der Delta II-Rakete am 17. Februar 2007

Cape Canaveral (Vereinigte Staaten), 19.02.2007 – Um 18:01 Uhr EST wurden am vergangenen Samstag von Startrampe 17-B des Kennedy Space Centers in Cape Canaveral von der „United Launch Alliance“ (ULA) im Auftrag der NASA fünf Satelliten gleichzeitig mit einer Delta-II-Rakete ins Weltall geschossen. Es handelt sich um die erste Satellitenmission, bei der fünf Satelliten auf einmal ins All befördert wurden. 73 Minuten nach dem Start wurden die fünf Satelliten planmäßig ausgesetzt und sendeten erste Signale aus, die von der Missionsleitung in Berkeley (University of California) aufgefangen wurden. Vassilis Angelopoulos, der Leiter des Projekts THEMIS, erwartet, dass die Satellitenmission einen „Durchbruch im Verständnis dafür bringen wird, wie das Magnetfeld der Erde Energie von der Sonne aufnimmt und abgibt.“

Der Start der Delta-Rakete war ursprünglich für Freitag vorgesehen, musste jedoch wegen schlechten Wetters um einen Tag verschoben werden. Nach ihrer erfolgreichen Aussetzung wird es noch bis etwa Mitte September dauern, bis die THEMIS-Satelliten ihre endgültigen, stark elliptischen Erdumlaufbahnen erreicht haben.

Die Magnetosphäre der Erde

Unablässig weht von der Sonne ein Partikelstrom elektrisch geladener Teilchen ins Weltall, den die Astronomen kurz „Sonnenwind“ nennen. Das Magnetfeld der Erde, das aus der Drehung des eisenhaltigen, flüssigen Erdkerns entsteht, schirmt die Erdoberfläche weitgehend vor dem Sonnenwind ab. Aber wie auf der Abbildung (rechts) zu erkennen ist, wird das Magnetfeld der Erde, seine „Magnetosphäre“ durch die Kraft des Sonnenwindes zur (sonnen-)windabgewandten Seite der Erde verformt, so dass diese sonnenabgewandte Seite des Erdmagnetfeldes wie ein „Windsack“ aussieht, wie man sie auf Brücken und Flugzeuglandebahnen findet, wie es in einer NASA-Information heißt.

So genannte „substorms“ (eine Art Sturm-Unterkategorie) überlasten die Magnetosphäre über das normale Maß hinaus. Die magnetischen Feldlinien, die in Richtung auf die Pole der Erde zulaufen, werden nun zu Einfallstoren, die große Mengen ionisierten Gases in die obere Atmosphäre der Polarregionen schleudern. Diese Wirkung des Sonnenwindes nehmen wir von der Erde aus als Nordlichter (aurora borealis) wahr.

Polarlicht

Die an dem Projekt arbeitenden Wissenschaftler gehen nun von der Annahme aus, dass das Studium der genannten „elektromagnetischen Teilstürme“ wesentlich zum Verständnis der Entstehung des Sonnenwindes und seiner Wechselwirkung mit der Erdmagnetosphäre beitragen wird.

Stärkere Sonnenstürme, die sich möglicherweise aus Serien aufeinander folgender elektromagnetischer Teilstürme zusammensetzen, können erhebliche Schäden verursachen. Der Ionenstrom kann so energiereich sein, dass auf der Erde elektronische Bauteile in Mobiltelefonen, Fernsehgeräten und viele anderen Geräten beschädigt werden können. Besonders gefährdet sind natürlich auch Raumfahrtmissionen, da Satelliten und bemannte Raumflugkörper nicht einmal durch das Erdmagnetfeld geschützt werden. Die Gas-Ionen von der Sonne können sogar lebende Zellen schädigen und so Hautkrebs und andere Zelldegenerationen auslösen. Dies alles ist wohl bekannt. Unklar ist aber immer noch, wie diese Stürme sich genau entwickeln, so dass Vorhersagen möglich sind. Dazu gibt es verschiedene Theorien.

So weit bisher bekannt, entstehen die so genannten elektromagnetischen Teilstürme in einem relativ kleinen Gebiet innerhalb der Erdmagnetosphäre auf der von der Sonne abgewandten Seite und breiten sich von dort in rasanter Geschwindigkeit über hunderttausende Kilometer aus. Wo genau dieser Entstehungsort ist, ließ sich bisher daher nicht feststellen. Einzelne Satelliten haben keine Chance diesen Ort ausfindig zu machen, da für eine genaue Ortsbestimmung mehrere Beobachtungsperspektiven nötig sind. Dieser Problematik versucht das THEMIS-Projekt durch die vergleichende Analyse von Satellitendaten von fünf verschiedenen Standorten gerecht zu werden.

Themis, die Göttin der Gerechtigkeit

Themis ist in der griechischen Mythologie die Gottheit der Gerechtigkeit und Ordnung. Das Akronym „THEMIS“ bedeutet: „Time History of Events and Macroscale Interactions during Substorms“. Themis besteht aus fünf Satelliten, die unabhängig voneinander und auf verschiedenen Erdorbits Daten über den Sonnenwind liefern sollen. Die relativen Zeitdifferenzen der von Satelliten aufgezeichneten Daten erlaubt – ähnlich dem durch zwei Augen entstehenden dreidimensionalen Bild – wesentlich genauere Ortsbestimmungen der zu beobachtenden Phänomene, als ein einzelner Satellit sie je liefern könnte. Das Projekt ist auf eine Zeitdauer von zwei Jahren angelegt. In diesem Zeitraum erwartet die NASA zirka 30 elektromagnetische Teilstürme, deren Daten von den Satelliten aufgezeichnet und an Bodenstationen auf der Erde übermittelt werden sollen. Gleichzeitig werden 20 Stationen in Kanada und den USA die über Nordamerika auftretenden Polarlichter mit Hilfe automatischer Kameras dokumentieren. Die Auswertung und der Abgleich dieser Daten soll entscheidende Aufschlüsse über den genauen Entstehungsort sowie die Ausbreitung der Teilstürme geben, die unter anderem die imposanten Naturscheinungen der Nordlichter erzeugen. Die Forschungsergebnisse werden unter anderem künftigen Raumfahrtmissionen zugute kommen, es aber auch erleichtern, den irdischen Auswirkungen des Sonnenwindes besser zu begegnen.

Auch in Deutschland und Österreich beobachtete man den Start der THEMIS-Mission mit Spannung. Das „Institut für Weltraumforschung“ (IWF) der Österreichischen Akademie der Wissenschaften mit Sitz in Graz sowie das Institut für Geophysik und extraterrestrische Physik (IGEP) der TU Braunschweig waren wesentlich an der Herstellung der Magnetometer beteiligt, die bei dieser Mission zum Einsatz kommen, darunter einem so genannten FluxGate Magnetometer, mit dessen Hilfe magnetische Felder vermessen werden können. Weiterhin war auch das Max-Planck-Institut für extraterrestrische Physik in Garching beteiligt.

Themenverwandte Artikel

  • Portal:Unbemannte Raumfahrt

Quellen

This text comes from Wikinews. Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution 2.5 licence. For a complete list of contributors for this article, visit the corresponding history entry on Wikinews.